TRENTo initial condition model and the isobar collisions

RBRC virtual Workshop, Physics Opportunities from the RHIC Isobar Run

Weiyao Ke

Los Alamos National Laboratory

January 27, 2022

TRENTo initial condition model

Initial condition is still a major uncertainty in heavy-ion collisions

Uncertainty in nuclear structure

- Woods Saxon parametrization, deformation, radial profiles.
- Correlations.
- Isospin.

Uncertainty in energy deposition.

- Transverse (x_{\perp}) structure.
- Longitudinal (η_s) structure.
- Baryon number, initial flow ...

The idea of TRENTo (middle rapidity)

Assumption: $\gamma \to \infty$ In central region with boost invariance

$$\frac{dE}{dx_{\perp}^2 d\eta_s}(\eta_s = 0) = f(T_A(x_{\perp}), T_B(x_{\perp}))$$

A flexible parametric approach to $f(T_A, T_B)$ [JS Moreland, JE Bernhard, SA Bass, PRC 92, 011901 (2015)]. No dynamics, but useful to quickly estimate the effect of initial state uncertainty.

Nuclear configuration: current public TRENTo (2D)¹

- No isospin, just nucleons.
- One-nucleon density: Woods-Saxon form $\frac{1}{1+\exp\left(\frac{r-R}{a}\right)}$
 - R: radius, a: diffuseness
 - Deformation: current public version only includes β_2, β_4 .

$$R \to R [1 + \beta_2 Y_{20}(\theta, \phi) + \beta_4 Y_{40}(\theta, \phi)]$$

- Parameters [Atom.Data Nucl.Data Tabl. 109-110 (2016) 1].
- min $r_{ij} > d_{\min}$ to mimic short-range repulsion.
- Light nuclei: load samples of nuclear configurations $|\Psi|^2(r)$, e.g., 3 He [PLB 680, 225–230 (2009)], 16 O.

¹http://qcd.phy.duke.edu/trento/index.html

Nuclear configuration: will enable more density profile

- Allow direct input to Woods-Saxon parameters R, a, β_n, \dots
- Including β_3 deformation.

$$\bullet \ \frac{1}{1+e^{(r-R_{\theta},\phi)/a}} \rightarrow \frac{1+b(r/r_0)^2}{1+e^{(r-R_{\theta},\phi)/a}}$$

Example: Oxygen with a large $|\beta_3|$ and nonzero b and $r_0 \triangleright$

Nucleon profile and N-N inelastic cross section

Nucleon model #1: Gaussian proton

$$\rho_p(\mathbf{r}, z) = \frac{e^{-\frac{r^2 + z^2}{2w^2}}}{(2\pi w)^{3/2}} \xrightarrow{\int dz} \rho_p(\mathbf{r}) = \frac{e^{-\frac{r^2}{2w^2}}}{2\pi w^2}$$

Probability of inelastic collisions at fixed impact parameter.

$$T_{pp}(b) = \int \rho_p(\mathbf{r} - \mathbf{b}/2)\rho_p(\mathbf{r} + \mathbf{b}/2)d\mathbf{r}^2$$

$$P_{\text{coll}}(b) = 1 - \exp\{-\sigma_{gg}T_{pp}(b)\}$$

 $\sigma_{\rm gg}$: effective opacity parameter tuned to reproduce $\sigma_{\it pp}^{
m inel}(\sqrt{\it s})$

$$\sigma_{pp}^{\mathrm{inel}}\sqrt{s} = \int P_{\mathrm{coll}}(\mathbf{b}; \sigma_{gg}(\sqrt{s}))d\mathbf{b}^2$$

Nucleon profile and N-N inelastic cross section

Nucleon model #2: with substructures [JS moreland, JE Bernhard, SA Bass, PRC 101, 024911]

$$\rho_p(r) = \frac{1}{N} \sum_{i=1}^{N} \frac{e^{-\frac{(r-r_i - R_{\rm cm})^2}{2w_c^2}}}{2\pi w_c^2}, r_i \sim \frac{e^{-\frac{r_i^2}{2w'^2}}}{2\pi w'^2}$$

 $R_{\rm cm}$ fix the center of mass.

 $\sigma_{\rm gg}$ solved in a MC way to reproduce $\sigma_{pp}^{\rm inel}(\sqrt{s}).$

Binary collisions and fluctuating participants density

- Participant nucleons determined by sampling binary collision probability $P_{\text{coll}}(b = |\mathbf{r}_i \mathbf{b}_{AB} \mathbf{r}_i|)$.
- Fluctuating participant density:

$$T_{A \text{ or } B}(\mathbf{r}) = \sum_{i \in \text{Part. } A \text{ or } B} \gamma_i \rho_p(\mathbf{r} - \mathbf{r}_i)$$

• $P(\gamma_i) \propto \gamma^{k-1} e^{-k\gamma}$. Emulate fluctuation in pp measurement, can change with kinematic cuts!

Energy density production at mid-rapidity

$$\frac{dE_T}{dx_\perp^2 \, d\eta_s} \big(x_\perp, \eta_s = 0\big) = \operatorname{Norm} \times f\big(T_A\big(x_\perp\big), \, T_B\big(x_\perp\big)\big)$$

TRENTo assumes

$$f(T_A, T_B) = \left(\frac{T_A^{\rho} + T_B^{\rho}}{2}\right)^{1/\rho}$$

known as "generalized mean" (p-mean) ansatz.

One motivation of using p-mean

p-mean is "homogeneous" $f(kT_A, kT_B) = kf(T_A, T_B)$. Binary collisions $(T_A T_B)$ is not.

If $N_{\rm coll}$ involved, fine binning of $N_{\rm ch}$ should differentiate $\epsilon_2
ightharpoonup .$

[JS Moreland, JE Bernhard, SA Bass, PRC 92, 011901 (2015)]

p-mean is a class of energy deposition consistent with this observation.

Two-component Glauber $N_{\rm ch} \propto (1-x)N_{\rm part} + xN_{\rm coll}$ is not consistent.

Connections to scaling of other models

Still, only a subclass of exisiting models.

Wounded nucleon model

$$\frac{dS}{dy\,d^2r_\perp}\propto \tilde{T}_A+\tilde{T}_B$$

 EKRT model PRC 93, 024907 (2016) after brief free streaming phase

$$\frac{\textit{dE}_\textit{T}}{\textit{dy}\,\textit{d}^2\textit{r}_\perp} \sim \frac{\textit{K}_{\text{sat}}}{\pi} p_{\text{sat}}^3(\textit{K}_{\text{sat}},\beta;\textit{T}_\textit{A},\textit{T}_\textit{B})$$

■ KLN model PRC 75, 034905 (2007)

$$\frac{dN_g}{dy\,d^2r_\perp} \sim Q_{\rm s,min}^2 \bigg[2 + \log\bigg(\frac{Q_{\rm s,max}^2}{Q_{\rm s,min}^2}\bigg) \bigg]$$

[JS Moreland]

Energy deposition ansatz

Round proton, AA@LHC [Duke PRC 94 024907]

Round p, RHIC&LHC, δf uncertainty [JETSCAPE PRC 103, 054904]

Fluctuating proton AA and pA [Duke PRC 101, 024911]

Fluctuating proton AA and pA, p_T -diff obs, refined centrality class [Trajectum PRC 103, 054909,]

The *p*-parameter is always tightly constrain with high likelihood at p = 0.

$$p=0$$
 implies $e=\sqrt{T_AT_B}$, can be motivated by $E_{\rm cm}=\sqrt{T_Ap^+T_Bp^-}=\sqrt{T_AT_Bs}$ [C Shen, S Alzhrani PRC 102 014909]

Nuclear/nucleon configurations & total cross-section

Centrality: percentage of minimum-bias hadronic cross section Pb-Pb@2.76 TeV 770 \pm 10(stat.) $^{+60}_{-50}$ (sys.)fm² **8% level**. [ALICE PRL 109 252302, PRC 88 044909].

In Glauber-based models, including TRENTo

- Gaussian nucleon w and β can affect the total cross section: $\sigma_{\rm PbPb}^{\rm TRENTo}[w=0.5~{\rm fm}]=782\pm4~{\rm fm}^2~{\rm vs}~\sigma_{\rm PbPb}^{\rm TRENTo}[w=0.8~{\rm fm}]=833\pm4~{\rm fm}^2$
- Some reasons that σ_{AA} is not used as a constraint in analysis before:
 - pp and nuclear inelastic cross-section have large uncertainty.
 - No exact match of geometry model to the experimental minimum-bias trigger.
 - Different IC models have different minimum-bias criteria ...
- Can we make use of the precision measurement cross sections in isobar collisions?

Isobar collisions

Some isobar results from STAR Collaboration [arXiv:2109.00131].

- Very high precision measurements.
- Can be very challenging for models. Previous Global fits usually agree with multiplicity and flow data within 5-10% uncertainty.

Perturbations in nuclear deformation

Use isobar to maximize the sensitivity to nuclear geometry [J Jia, C-J Zhang, 2111.15559 and J Jia PRC 105 014905].

FIG. 7. It is an interesting question if our $v_2\{2\}$ (top) and $v_3\{2\}$ (bottom) could have been anticipated by initial geometric differences of $\epsilon_n\{n\}$, as in |7|. We show such comparisons for $2\kappa^2 V_1$ RuRu (case 5, left) and for the case of appendix B, where we divide $\beta_3 = 0.020$ with the case $\beta_3 = 0$ (right).

Linearized response of v_n to ϵ_n

$$v_2 \approx k_{22}\epsilon_2$$
 $v_3 \approx k_{23}\epsilon_3$

Best scenario: isobar systems only differ in higher orders in the response coefficients k_{22} , k_{23} .

• Unfortunately, hydrodynamical response not entirely canceled when $R_A \neq R_{ar{A}}$

[d G. Nijs, W. van der Schee 2112.13771] except for very central region.

An initial-state study (0-25%)

First, fixing the energy deposition parameter p=0, nucleon width w=0.6 fm, fluctuation parameter k=1, and repulsion distance d_{\min} . Just vary Woods-Saxon parameters

- $0 < \beta_{2,Ru}, \beta_{2,Zr} < 0.3$.
- $0 < \beta_{3,Ru}, \beta_{3,Zr} < 0.3$.
- $4.9 < R_{\rm Ru}, R_{\rm Zr} < 5.2$ fm.
- $0.4 < a_{Ru}, a_{Zr} < 0.6$ fm.

Nuclear deformation with "only" information from HIC

Apart from the sign of β , no prior knowledge from nuclear strucutre used.

⊲ Not very sensitive to the absolute value of β without using the magnitude of v_n . High confidence: $\beta_{2,\mathrm{Ru}}/\beta_{2,\mathrm{Zr}} > 1, \beta_{3,\mathrm{Ru}}/\beta_{3,\mathrm{Zr}} < 1$

Is this conclusion robust when other TRENTO parameters vary?

Vary both TRENTo parameters and the nuclear deformation and Woods-Saxon parameter.

•
$$0 < \beta_{2.Ru}, \beta_{2.Zr} < 0.35$$
.

- $0 < \beta_{3,Ru}, \beta_{3,Zr} < 0.35$.
- $4.9 < R_{\rm Ru}, R_{\rm Zr} < 5.1$ fm.
- $0.4 < a_{\rm Ru}, a_{\rm Zr} < 0.6$ fm.
- $p \sim e^{-\frac{(p-0.05)^2}{2\times 0.06^2}}$ informative prior from previous study.
- 0.4 < w < 1.0 fm, nucleon width.
- 1/3 < k < 3, fluctuation.
- ullet 0 < d < 1.5 fm, nucleon repulsion distance.

Relatively robust conclusion on β_2 and β_3 , considering uncertainties in TRENTo parameters.

Nuclear cross section

- AA cross section changes significantly with current parametrization of β (and a_0, w).
- Cross sections as an independent constraint.
- Precise values may depend on "minimum bias" definition + other systematic. Do they cancel in isobar ratio?

Total cross-section for AA and pA:

Ratio of two isobars with one has $\beta_2 = 0$.

3D developments

How can we use isobars in asymmetric collisions?

- Total cross sections of pA vs $p\bar{A}$.
- Longitudinal decorrelations for rapidity evolution of geometry.
- Collisions of large nuclei and isobar, e.g. Au+Ru vs Au+Zr.

$$R_{\mathrm{Au}} \approx 6.5$$
 fm. $R_{\mathrm{Ru,Zr}} \approx 5.0$ fm.

Eliminate one deformed object in ultra-central collisions.

Ru, Zr

[Fig. Javier Orjuela Koop, University of Colorado, Boulder]

Extra efforts: 3D initial condition + 3+1D simulation (order of magnitude expensive).

TRENTo: from middle to finite rapidity

• New² TRENTO 3D parametrization is constructed exclusively for p = 0. Near middle rapidity

$$e(\mathbf{x}, \eta_s = 0) \propto \left[\frac{T_A(\mathbf{x})^p + T_B(\mathbf{x})^p}{2} \right]^{\frac{1}{p}} \to N\sqrt{s}^{\alpha} \sqrt{T_A T_B}$$

• Extend to finite rapidity, but away from y_{beam}

$$e(\mathbf{x}, |\eta_s| \ll y_b) = e(\mathbf{x}, 0)e^{-\frac{(\eta_s - \eta_{c.m.})^2}{2y_b}}$$

$$\eta_{c.m.}(\mathbf{x}) = \frac{1}{2} \ln \frac{T_A e^{y_b} + T_B e^{-y_b}}{T_A e^{-y_b} + T_B e^{y_b}}$$

width $\sim \sqrt{y_b}$ (Landau picture of particle production).

²Earlier 3D extension, WK, JS Moreland, JE Bernhard, SA Bass, PRC 96, 044912 (2017).

Scaling of particle production near y_{beam}

Limiting fragmentation assumption³: $dN_{ch}/d\eta/N_{part.target} \approx F(\eta - y_b)$

- Form of $dF(\eta y_b)$ motivated by parton distribution function of the broken target⁴.
- Assume energy deposition $y \approx y_b$ scales as

$$\frac{de_{\mathrm{F/B}}}{d\eta} \sim C_{\mathrm{F/B}} \left[T_A(\mathbf{x}) F(y_{\mathrm{b}} - \eta) + T_B(\mathbf{x}) F(y_{\mathrm{b}} + \eta) \right]$$

• Interpolate to midrapidty fireball $(N\sqrt{s}^{\alpha}\sqrt{T_{A}T_{B}}g(\eta-\eta_{\rm cm}))$, with longitudinal energy-momentum conservation.

⁴J Benecke, TT Chou, CN. Yang, E Yen Phys. Rev. 188 (1969) 2159. PHOBOS PRL 91 (2003) 052303.

⁴J Jalilian-Marian, PRC 70, 027902; SA Bass, B Müller, DK Srivastava PRL 91 052302

Impact on rapidity-dependent geometric properties

- Geometric properties will evolve from fragmentation region (T_A, T_B) to central region $(\sqrt{T_A T_B})$.
- Central fireball becomes increasingly important at high \sqrt{s} .

Typical T_A , T_B for A-A collisions

Typical T_A , T_B for p-A collisions

Impact on rapidity-dependent geometric properties

- Geometric properties will evolve from fragmentation region (T_A, T_B) to central region $(\sqrt{T_A T_B})$.
- Central fireball becomes increasingly important at high \sqrt{s} .

Typical T_A , T_B for A-A collisions

Typical T_A , T_B for p-A collisions

Spacetime-rapidity evolution of the event geometry

Rapidity evolution of the eccentricity:

$$\epsilon_n(\eta_s)e^{in\Phi_n(\eta_s)} = \frac{\int dx_{\perp}^2 r^n e^{in\phi} e(x_{\perp}, \eta_s)}{\int dx_{\perp}^2 r^n e(x_{\perp}, \eta_s)}$$

- $\langle \epsilon_n \rangle (\eta_s) \sim {\rm const.}$ in AA collisions.
- In p-A collisions, ε_n interpolates proton-shape fluctuation, central freball, and nuclear participant fluctuation.

Longitudinal factorization ratio of participant planes

Pb-Pb 2.76 TeV, CMS, PRC 92 034911

$$Q_n(\eta) = \sum_{i \in \eta} e^{in\phi_i}$$

$$0$$

$$r_n = \frac{\langle Q_n(-\eta)Q_n^*(\eta_{\text{ref}}) \rangle}{\langle Q_n(\eta)Q_n^*(\eta_{\text{ref}}) \rangle} \approx \frac{\langle \cos(n[\Psi_n(-\eta) - \Psi_n(\eta_{\text{ref}})]) \rangle}{\langle \cos(n[\Psi_n(\eta) - \Psi_n(\eta_{\text{ref}})]) \rangle}$$

- Approximate Ψ_n with Φ_n of ϵ_n .
- Agreement for mid-central collisions. TRENTo results in too much decorrelation in 0-5% collisions.

Other studies: AMPT+hydro, LG Pang et al Eur.Phys.J.A 52 (2016) 97; 3D-Glasma, B Schenke, S Schlichting; Torque Glauber, P Bozek, W Broniowski, PLB 752 (2016) 206-211

 $^{^7 \}mbox{Pb-Pb}$ 2.76 TeV, CMS, PRC 92 034911. Pb-Pb 5.02 TeV, ATLAS, EPJC 78 142; Au-Au 200 & 27 GeV, STAR Preliminary QM18 (NPA 982 403-406), QM19 (2005.03252)

Ongoing works

Ongoing efforts with **Derek Soeder (Duke)**, Jean Francois Paquet, Steffen Bass.

- \bullet Calibrate new 3D TRENTo + (1+1D) dynamics to charged particle pseudorapidity density.
- To do: calibrate with JETSCAPE (3+1)D simulation of soft sector [JETSCAPE Phys.Rev.C 103 (2021) 5, 054904, https://jetscape.org/sims/].
 - TRENTo (2d/3d)
 - Pre-equilibrium dynamics (Free streaming).
 - 3+1D viscous hydrodynamics (MUSIC).
 - Particlization (IS3D).
 - Hadronic transport (SMASH).

Summary

- TRENTo: parametric initial condition available in 2D and 3D (developing).
- New 3D model:
 - TRENTo-2D near middle rapidity is interpolated to limiting fragmentation region near beam rapidity.
 - Analysis with dynamical models underway.
- Isobar measurements are sensitive to nuclear geometry.
- A simple Bayes study of Ru/Zr of $N_{\rm ch}$, v_2 , v_3 at the initial condition (IC) level:
 - Results are robust within our current uncertainty in energy deposition model.
 - IC calculation without dynamics may not have the required accuracy.
- Are total cross-section ratios feasible in isobar collisions $AA/\bar{A}\bar{A}$, $pA/p\bar{A}$, $AB/\bar{A}B$ to constrain Glauber-based models?

Longitudinal factorization ratio of participant planes

Pb-Pb 2.76 TeV, CMS, PRC 92 034911

$$Q_{n}(\eta) = \sum_{i \in \eta} e^{in\phi_{i}}$$

$$0$$

$$r_{n} = \frac{\langle Q_{n}(-\eta)Q_{n}^{*}(\eta_{\text{ref}})\rangle}{\langle Q_{n}(\eta)Q_{n}^{*}(\eta_{\text{ref}})\rangle} \approx \frac{\langle \cos(n[\Psi_{n}(-\eta) - \Psi_{n}(\eta_{\text{ref}})])\rangle}{\langle \cos(n[\Psi_{n}(\eta) - \Psi_{n}(\eta_{\text{ref}})])\rangle}$$

Agreement in mid-central collisions. TRENTo

- Approximate Ψ_n with Φ_n of ϵ_n .
- results in too much decorrelation in 0-5% collisions.

 Other studies: AMPT+hydro, LG Pang et al Eur.Phys.J.A 52 (2016)
 97; 3D-Glasma, B Schenke, S Schlichting; Torque Glauber, P Bozek,
 W Broniowski, PLB 752 (2016) 206-211
- \sqrt{s} -dependent r_n in 10-40%⁵, to be improved with dynamical evolution.

Is this conclusion robust when other TRENTO parameters varies?

Vary both TRENTo parameters and the nuclear deformation and Woods-Saxon parameter.

- $0 < \beta_2 < 0.35$.
- $0 < \beta_3 < 0.35$.
- $4.9 < R_{Ru}, R_{Zr} < 5.1$ fm.
- $0.4 < a_{Ru}, a_{Zr} < 0.6$ fm.

- $p \sim e^{-\frac{(p-0.05)^2}{2 \times 0.06^2}}$ informative prior from previous study.
- 0.4 < w < 1.0 fm, nucleon width.
- 1/3 < k < 3, fluctuation.
- 0 < d < 1.5 fm, nucleon repulsion distance.

